Inhibition of calpain results in impaired contraction-stimulated GLUT4 translocation in skeletal muscle.
نویسندگان
چکیده
It was previously found that transgenic mice that overexpress the calpain inhibitor calpastatin (CsTg) have an approximately 3-fold increase in GLUT4 protein in their skeletal muscles. Despite the increase in GLUT4, which appears to be due to inhibition of its proteolysis by calpain, insulin-stimulated glucose transport is not increased in CsTg muscles. PKB (Akt) protein level is reduced approximately 60% in CsTg muscles, suggesting a possible mechanism for the relative insulin resistance. Muscle contractions stimulate glucose transport by a mechanism that is independent of insulin signaling. The purpose of this study was to test the hypothesis that the threefold increase in GLUT4 in CsTg would result in a large increase in contraction-stimulated glucose transport. CAMKII and AMPK mediate steps in the contraction-stimulated pathway. The protein levels of AMPK and CAMKII were increased three- to fourfold in CsTg muscles, suggesting that these proteins are also calpain substrates. Despite the large increases in GLUT4, AMPK, and CAMKII, contraction-stimulated GLUT4 translocation and glucose transport were not increased above wild-type values. These findings suggest that inhibition of calpain results in impairment of a step in the GLUT4 translocation process downstream of the insulin- and contraction-signaling pathways. They also provide evidence that CAMKII and AMPK are calpain substrates.
منابع مشابه
Calpain facilitates GLUT4 vesicle translocation during insulin-stimulated glucose uptake in adipocytes.
Calpains are a family of non-lysosomal cysteine proteases. Recent studies have identified a member of the calpain family of proteases, calpain 10, as a putative diabetes-susceptibility gene that may be involved in the development of type 2 diabetes. Inhibition of calpain activity has been shown to reduce insulin-stimulated glucose uptake in isolated rat-muscle strips and adipocytes. In this rep...
متن کاملUnderstanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملExercise Causes Muscle GLUT4 Translocation in an Insulin-Independent Manner
Glucose uptake in skeletal muscle is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. The most important stimulators of glucose transport in skeletal muscle are insulin and exercise. Glucose uptake in skeletal muscle during exercise induces acceleration of many processes compared to the resting state. The scientific literature does not underline the role play...
متن کاملKinetics of Contraction-Induced GLUT4 Translocation in Skeletal Muscle Fibers From Living Mice
OBJECTIVE Exercise is an important strategy for the treatment of type 2 diabetes. This is due in part to an increase in glucose transport that occurs in the working skeletal muscles. Glucose transport is regulated by GLUT4 translocation in muscle, but the molecular machinery mediating this process is poorly understood. The purpose of this study was to 1) use a novel imaging system to elucidate ...
متن کاملRegulation of GLUT4 traffic and function by insulin and contraction in skeletal muscle.
Glucose transport across the cell surface is a key regulatory step for glucose metabolism in skeletal muscle. Both insulin and exercise increase glucose transport into myofibers through glucose transporter (GLUT) proteins. Skeletal muscle expresses several members of the GLUT family but the GLUT4 glucose transporter is considered the main "regulatable" isoform that is modulated by insulin and c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 291 3 شماره
صفحات -
تاریخ انتشار 2006